Blocking a protein may limit spread of prostate
Researchers at Boston University School of Medicine (BUSM) have discovered that blocking a specific protein, may be a promising strategy to prevent the spread of castration-resistant prostate cancer (CRPC).
Under the direction of BUSM’s Gerald V. Denis PhD, researchers have long studied a family of three closely related proteins, called BET bromodomain proteins, composed of BRD2, BRD3 and BRD4, which regulate gene expression. BUSM researchers were the first (in the 1990s) to show how these proteins function in human cancer.
These researchers now have discovered that inhibition of the protein BRD4, but not BRD2 or BRD3, consistently regulated prostate cancer cell migration and invasion.
CRPC is a highly aggressive form of prostate cancer that often leads to the development of lethal metastases. Standard of care treatment for patients with CRPC typically includes a means to disrupt androgen receptor (AR) signaling, and while effective for an average of two-three years, treatment inevitably fails to impede progression due to acquired resistance mechanisms to the AR.
Source: Protein that promotes advancement of prostate cancer identified